
UNIVERSITY OF ABERDEEN
DEPARTMENT OF BIO-MEDICAL PHYSICS AND BIO-ENGINEERING

1495 1995
R

O
MIT

I NI

M
O

D

IN
IT

IU
M

SA
PI

ENT I Æ

Comparison of Simulator and
Portal Radiographs

Jonathan A. Buzzard

B.Sc. (Honours) Physics with Computer Applications

Heriot-Watt University

This report is submitted in partial fulfilment of the requirements
for the degree of M.Sc. Information Technology (Medical Physics)
at Aberdeen University and is a record of work carried out during
the last four months of the Instructional Course for that degree in
Session 1995/96.

Abstract

The problem of accurately setting up patients has been understood for some

time, and it is now common practice to take portal films during a course

of external beam radiotherapy as part of a complete quality assurance pro-

gramme.

A method for registration of digitized portal and simulator films was de-

veloped based on the identification of anatomical fiducial points on a simula-

tor image and its corresponding portal image to provide a method of patient

position verification.

Experiments conducted on pelvic phantom images to check the consis-

tency and accuracy of the registration process indicate that single intra-user

accuracy was 0.5◦ for rotations and 1mm for shifts. Multiple inter-user vari-

ation was also examined and found to be 1◦ for rotations and 1.2mm for

shifts.

The technique appears to be suitable as a portal image verification system

for radiotherapy treatment.

i

Declaration

This report is my own composition and has not been accepted in any previous

application for a degree. I have carried out the work, of which this is a record,

at the Department of Bio-Medical Physics and Bio-Engineering, University

of Aberdeen and the Radiotherapy Department of Aberdeen Royal Infirmary

during the summer of 1996. All verbatim extracts have been distinguished by

quotation marks and the sources of all information specifically acknowledged.

Jonathan A. Buzzard

August 1996

ii

Acknowledgements

I would like to thank the following people for their assistance in this project,

Mr. A. G. W. Robertson my project supervisor for his assistance, guidance

and the encouragement he gave me throughout this project, Dr. P. E. Kopp

for pointing me in the right direction on how to solve overdetermined linear

systems, Lorna Dewar for her assistance in taking the phantom images and

all those people, who gave up their spare time to register the image set.

Finally, I want to express my special thanks to my mother. Without her

constant encouragement and support over the past two decades, none of this

would have been possible.

iii

Contents

Abstract i

Declaration ii

Acknowledgements iii

1 Introduction 1

2 Mathematical Background 5

2.1 The Affine Transformation . 5

2.2 Overdetermined Linear Systems 10

2.2.1 The Normal System 13

2.2.2 Singular Value Decomposition 14

3 Image Processing 17

3.1 Histogram Equalization . 17

3.2 Colour Schemes . 20

4 Implementation 22

4.1 User Interface . 22

4.2 Image Acquisition . 23

4.3 Image Display . 25

4.4 Histogram Equalization . 26

iv

4.5 Fiducial Point Selection . 27

4.6 Image Transformation . 28

4.7 Image Comparison . 30

4.8 Summary . 30

5 Results 33

6 Discussion 37

7 Summary 38

7.1 Future Work . 38

7.2 Conclusions . 40

A Source to Sandra 44

B Routine to load a LumiscanTM image 59

C Bitmaps used for button labels 61

D Converting the transformations to machine geometry 63

v

1 Introduction

The aim of this project is to provide a computer program to aid the routine

comparison of portal and simulator radiographs for checking the accuracy

of patient and beam setups in radiotherapy. Portal radiographs taken on a

high energy treatment machine lack the detail of simulator films taken using

much lower energy X-rays and require some image processing to enhance

the visible features. In addition the two sets of films usually have different

magnifications, rotations and translations and will require registering before

a comparison can be made.

The goal of radiotherapy is to deliver a prescribed dose of radiation to

a tumour as accurately as possible while minimizing the dose to normal

surrounding tissues. Therefore, keeping the irradiated volume to a minimum

is desirable. This is accomplished by keeping the treatment volume as close as

possible to the tumour volume. However, this has to be balanced against the

possibility of undertreating cancerous tissue due to positional uncertainties.

Studies of portal images have shown that variations in a patient setup

greater than 1 cm are common (Byhardt, Cox, Hornburg & Liermann 1978,

Rabinowitz, Broomberg, Goitein, McCathy & Leong 1985, Ding, Shalev &

Gluchev 1993). Positional errors of this size mean that the full benefits from

improvements in treatment planning by using computers for dose calculation

1

and CT scans for tumour localization are not being realized. It is increasingly

becoming the case that the positional accuracy to which the dose is delivered

is the most significant and avoidable factor in treatment complications and

failures (Williams & Thwaites 1993). It has been theoretically estimated

that reductions in cure rates due to positional errors could be as high as 20%

(Goitein 1975, McParland 1993).

Unfortunately the positional accuracy to which the prescribed dose is

delivered is also the most difficult to control. This relates to the difficulties

involved in setting up the patient, accurately and reproducibly from day to

day. The problem of accurately setting up patients has been understood

for some time (Marks, Haus, Sutton & Griem 1976), and it is now common

practice to take portal films during a course of external beam radiotherapy

as part of a complete quality assurance programme. The portal films can

then be compared with the simulator film to ensure that patient alignment

matches that at the simulation stage, and remains consistent throughout the

treatment.

The use of portal images also provides a valuable tool for checking the

placement of shielding blocks.

A significant difficulty encountered in the use of portal images for treat-

ment verification is the low contrast that they exhibit. Bone, producing

contrast of 18% at photon energies of 50keV, will only show a 2% contrast

2

when imaged at an energy of 6MeV (Williams & Thwaites 1993). In addition

at this higher treatment energy, there are large amounts of scatter further

reducing contrast in the image. Unfortunately suitable grids are not avail-

able to overcome this. The resultant poor quality of portal images makes

their comparison with the prescription (simulator) images a difficult and

time-consuming process. A further complication is that the two images are

usually at different magnifications, and commonly have rotations and trans-

lations with respect to each other, often as a result of film placement as much

as than patient setup. These factors combine generally to limit the use of

portal images in the modern hospital environment to one check film on the

first fraction, which is far from the ideal of verification at every treatment.

Advances in megavoltage imaging systems mean that treatment machines

can now be fitted with on-line portal imaging, allowing the acquisition of

digital portal images in the first few seconds of treatment. If techniques

for the rapid comparison of these images to those acquired at the simulation

stage can be developed, a potential for the pro-active detection and correcting

of poor patient alignment exists. In this scenario, at the beginning of each

treatment fraction, a portal image will be taken and compared with the

simulator image, and any problems in the patient setup can then be resolved

before the radiation dose is delivered. This is favorable to the current practice

of retrospectively correcting the patient setup based on a portal image taken

3

at a previous treatment fraction, with the possibility of re-simulation in more

difficult cases. The improvements in patient setups this would bring may

well lead to a reduction in treatment complications and failures and clearly

if this were the case would represent a major step forward in accurate patient

setups.

For the time being, the requirements of the program are to display por-

tal and simulator images digitized on a scanner. After image processing to

enhance the contrast, registration will be carried out. This will correct differ-

ences in magnification and bring the two images into alignment, thus making

comparisons between the images much simpler. Finally a facility to compare

the two images either qualitatively or quantitatively will be required.

4

2 Mathematical Background

As discussed previously the two radiographs are at different magnifications,

rotated with respect to one another, and the images are at different offsets

in the film. Therefore before the two images can be compared, they must

be brought into alignment by the application of a spatial transformation. A

spatial transformation is a mapping function that establishes a relationship

among all points in an image and its warped counterpart. To register the

two images, a method of determining the spatial transformation involved is

required.

In this section we discuss the mathematics behind the spatial transfor-

mations involved, and the possible methods available to infer the parameters

of the transformation involved for two particular images.

2.1 The Affine Transformation

The three possible transformations of the radiograph (rotation, scale and

translation) are special forms of the Euclidean Affine transformation, which

is a transformation w : R
2 → R

2, such that the transformation of the point

(x, y) is described by the equation

w(x, y) = (ax+ by + e, cx+ dy + f) (1)

where a, b, c, d, e and f are real numbers. This can be more conveniently

5

represented in matrix notation as

w(x, y) =

 a b

c d

x +

 e

f


W = A · x + b

where A represents a linear transformation and b a translation.

Lemma 1 The affine transformation has an important property, that is if

w1 : R
2 → R

2 and w2 : R
2 → R

2 are both affine transformations then

w3 = w1 ◦ w2 is also an affine transformation.

As the three translations that we wish to apply to our radiograph are

particular forms of affine transformations, then by lemma 1 (Barnsley &

Hurd 1993) there must exist a single affine transformation W that when

applied to the radiograph will apply all three desired transformations in one

operation. This reduces the problem of registering the two radiographs to

finding the general affine transformation W that will apply a suitable scaling,

rotation and translation to our image.

The affine transformation can be characterized by it’s action on three

points, as shown in figure 1. If we have three points (x1, y1), (x2, y2), (x3, y3),

and the corresponding points (x̃1, ỹ1), (x̃2, ỹ2), (x̃3, ỹ3) after the affine trans-

formation W has been applied. Then if we substitute these into equation 1,

we get a system of linear equations (2) that when solved will give us the

6

6

-
x

y

�
�
��W

(x1, y1)
?

(x̃1, ỹ1)
?

(x2, y2)?

(x̃2, ỹ2)?

(x3, y3)
?

(x̃3, ỹ3)
?

Figure 1: An affine transformation is determined by its action on three points.

coefficients a, b, c, d, e and f of W.

x1a+ y1b+ e = x̃1

x2a+ y2b+ e = x̃2

x3a+ y3b+ e = x̃3

x1c+ y1d+ f = ỹ1

x2c+ y2d+ f = ỹ2

x3c+ y3d+ f = ỹ3 (2)

Thus by selecting three points in one image and the corresponding points

in the other image, by then solving the resultant system of linear equations

we have a means by which we can calculate the correct general affine trans-

formation required to register the two images.

Using this approach however has a drawback in that a general affine

7

transformation has more degrees of freedom than we require. A general

affine transformation is composed of a rotation, a magnification of different

amounts in the directions of the x and y axis, a shear and a translation.

We know however that any difference in the magnifications between the two

images will be the same in both directions, and that is also unlikely for there

to be any significant shearing between the two images.

Therefore what we require is to find a more specialized form of the affine

transformation that only involves a translation (e, f), a rotation θ and a

scaling r, uniform in all directions. This special case form of the affine

transformation is known as a similitude and has the form

w(x, y) =

 r cos θ −r sin θ

r sin θ r cos θ


 x

y

+

 e

f

 (3)

substituting α = r cos θ and β = r sin θ into equation 3 gives

w(x, y) =

 α −β

β α


 x

y

+

 e

f


= (αx− βy + e, βx+ αy + f)

This is now an equation in four unknowns, just two control points (x1, y1),

(x2, y2), and the corresponding transformed points (x̃1, ỹ1), (x̃2, ỹ2) will pro-

vide sufficient equations to allow the solution for the four unknowns α, β, e

8

and f .

x1α− y1β + e = x̃1

x2α− y2β + e = x̃2

x1β + y1α + f = ỹ1

x2β + y2α + f = ỹ2 (4)

It would also be useful if we could determine from the overall affine trans-

formation what the specific rotation, magnification and translation were.

Determining the translation is trivial as the two components are separate

unknowns in the simultaneous equations (e and f), however the rotation and

magnification are more complicated as the rotation θ and the magnification

r are combined to give the two unknowns α and β, as

α = r cos θ (5)

β = r sin θ (6)

It is possible to separate r and θ by solving this system of simultaneous

equations. First re-arranging equation 5 to give

r =
α

cos θ
(7)

then by substituting equation 7 back into equation 6 we get

β =
α

cos θ
sin θ

9

x

y

z

Out of plane rotation

Out of plane rotation

In plane rotation

Figure 2: The geometry of the patient and treatment couch.

β

α
=

sin θ

cos θ

tan θ =
β

α
(8)

Hence using equation 8 we can work out the angle of rotation θ, which can

then be substituted into equation 7 to workout the magnification r. It should

be noted that care has to be taken when working out the inverse tangent, due

to the limited range of the inverse tangent function (tan−1 θ has the range

[−1
2
π, 1

2
π]). When carrying this out, using an inverse tangent function that

takes the numerator and denominator of the fraction θ as separate arguments

is preferable. Inverse tangent functions of this form have the full range [−π, π]

One final point to consider is the inability of affine transformations in the

10

Euclidean plane to cope with off-axis rotations. This is shown by figure 2.

From this we can see how movements produce the various transformations

seen in the images. Shifts in the xy plane, result in translations in the image,

movement along parallel to the z-axis will produce changes in magnification,

and rotations around the z-axis will produce rotations in the image.

2.2 Overdetermined Linear Systems

As discussed in the previous section to find the correct transformation re-

quired to register the two images we are required to solve a system of si-

multaneous linear equations. After two pairs of fiducial points have been

identified in each image, the coordinates can be substituted into equation 4

and the systems solved.

This however overlooks the fact that each point identified in the second

image is unlikely to be in the true corresponding position. In reality when

identifying a fiducial point there is likely to be some uncertainty (∆x,∆y)

in identifying it’s position. Additionally this uncertainty in the location

of the fiducial point will vary between different attempts at identification

and between different operators. So while in theory a set of two fiducial

points is sufficient to calculate the correct transformation to register the two

images, in reality the errors associated with their positions means that the

11

transformation calculated will not be optimal.

A method to overcome the uncertainties in the placement of the fidu-

cial points is therefore required. The positional uncertainty associated with

each individual point will be normally distributed, randomly around it’s true

point.

One method then to overcome these positional uncertainties is simply

to increase the number of points used in calculating the transformation. If

the uncertainties are truly random, then this will reduce the overall error.

This is because as the number of points is increased, the system moves from a

random regime to a stochastic one. In the stochastic regime the errors balance

themselves out, with an equal number of positive and negative errors. This

is analogous to radioactive decay and as the number of fiducial points tends

towards infinity the error tends to zero as shown in equation 9.

lim
n→∞

n∑
i=1

(∆xi,∆yi) = 0 (9)

Unfortunately if we have more than two sets of fiducial points, we will

have a system of linear algebraic equations that has more equations than

unknowns. Usually such systems have no unique solution, and the set of

equations are said to be overdetermined.

12

2.2.1 The Normal System

The system of linear algebraic equations whose solution will yield the trans-

formation required to register the two images is overdetermined, that is we

have m equations with n unknowns with m > n. If all the fiducial points

were perfectly placed a unique solution would exist, however due to the un-

certainties in the placement of the points, a unique solution does not exist.

What is required then is to seek a “compromise” solution to the system of

equations A · x = b, which comes closest to satisfying all of the equations

simultaneously.

The solution first proposed by Gauss, is to seek the parameters x, which

would have the property that the sum of the squares of the differences be-

tween the left- and right-hand sides of the equation are minimized. This is

known as the linear least-squares problem. The solution proposed by Gauss

is to solve a reduced set of n equations in n unknowns, given by equation 10

(AT ·A) ·A = (AT · b) (10)

where AT denotes the transpose of the matrix A. The system of equations 10

are known as the normal system, whose solution will yield a solution vector

x that minimizes the sum of the squares of the residuals.

Unfortunately the condition number of matrix AT · A is the square of

13

the condition number of the matrix A. This means that if the residuals are

small then any numerical solution of the normal system, will suffer a serious

decline in accuracy due to round off errors. So while it may be tempting to

solve the normal system directly by Cholesky decomposition, exploiting the

symmetrical and positive definite properties of the matrix AT ·A, this will

lead to a numerically unstable answer.

2.2.2 Singular Value Decomposition

The method of choice for solving a linear least squares problem, without prior

knowledge of the system is Singular Value Decomposition or SVD. This is

a powerful technique for dealing with equations which are singular, or close

to. This is exactly what we have in our normal system. The technique of

singular value decomposition relies on the theorem of linear algebra, shown

in lemma 2 (Press, Teukolsky, Vetterint & Flannery 1992), the proof of which

is beyond the scope of this document.

Lemma 2 Any m×n matrix A whose number of rows m is greater than or

equal to its number of columns n, can be written as the product of an m× n

column-orthogonal matrix U, an n × n diagonal matrix W with positive or

zero elements (the singular values), and the transpose of an n×n orthogonal

matrix V.

14

The technique works by avoiding the direct computation of the normal

system. Considering our set of simultaneous equations

A · x = b (11)

where A is am by nmatrix, and x and b are vectors. Then if we then perform

singular value decomposition on the matrix A to give us the matrixes U, W

and V and substitute these into equation 11 according to lemma 2 we get

U · [diag(wj)] ·VT · x = b (12)

Now as both U and V are orthogonal, then the products U · UT, and

V · VT are both equal to the identity matrix I. Additionally as W is a

diagonal matrix, then its inverse is the diagonal matrix whose elements are

the reciprocals of the elements wj. From equation 12 it follows that the

solution vector x is given by

x = V ·
[
diag

(
1

wj

)]
·UT · b (13)

This “solution” vector x constructed by equation 13, will not exactly

solve equation 11. However it will be the solution, from the set of all possible

solutions that minimizes the sum of the squares of the residuals between the

left- and right-hand side, ie. the least squares solution.

15

Therefore by calculating the singular value decomposition of the matrix

A formed from the set of linear simultaneous equations, resulting from the

coordinates of the fiducial points we have a means by which we can calculate

the “best” transformation to register the two images.

16

3 Image Processing

The portal images suffer from poor contrast, primarily due to the much higher

energies of the photons in comparison to standard X-rays. This makes the

identification of suitable anatomical points in the images for use in registra-

tion a difficult and often impossible process. Therefore before the selection

of fiducial points takes place, processing the portal image to improve the

contrast is necessary.

3.1 Histogram Equalization

The commonest form of contrast enhancement is a 1–to–1 pixel transforma-

tion where the output image is formed by using a lookup table to convert

the brightness of the pixel in the input image to a new brightness value in

the output image.

The most frequently used technique of this type is known as histogram

equalization, and is based on the assumption that a good grey-level assign-

ment scheme should have equally distributed brightness levels over the whole

brightness scale. Individual pixels retain their brightness order (i.e. they re-

main brighter or darker than other pixels). However, the values are shifted so

that they are equally distributed over the brightness scale. The result of the

brightness transformation should be that the cumulative histogram becomes

17

(a) detail from original image (b) detail after histogram equalization

(c) histogram of original image (d) histogram after equalization

Figure 3: The effect of a histogram equalization

a straight line.

As a digital image has only a finite number of grey scales, an ideal equal-

ization is not possible. This causes some pixels with initially different bright-

ness values to be assigned the same value, and other values to be missing

altogether. The result of a histogram equalization on a typical portal radio-

graph can be seen in figure 3.

Formalizing this, if we have a pixel of brightness pb in the original image

from a range [p0, pk], then if tb is the number of pixels in the image at a

18

brightness level b or less, defined as

tb =
b∑

i=0

pi (14)

then if there are a total of n pixels in the image, the new brightness value q

is defined to be

q =
tb(k − 1)

n
− 1

The histogram equalization enhances the contrast for brightness values

close to maxima in the histogram and decreases contrast near the minima.

That is, it improves the contrast in the image in areas of poor contrast at

the expense of those areas where there is already good contrast.

A limitation of histogram equalization is that large peaks in the histogram

can also be caused by large areas of similar brightness. Frequently these

correspond to areas of background, and are essentially uninteresting. The

effect of histogram equalization on these areas is to enhance the visibility of

noise.

A simple method by which this can be overcome for either background

or foreground areas is to display the histogram and allow the user to select a

cutoff value. All pixels in the input image of the same or lower brightness are

mapped to the minimum brightness level, and remaining brightness levels are

equalized. Similarly a cutoff value can be defined for foreground areas, where

19

all pixels equal or above a selected brightness are mapped to the maximum

brightness level.

Another limitation of the technique is that it does not adapt to local con-

trast requirements; minor contrast differences can be missed entirely when

the number of pixels falling in a particular brightness range is small. This

weakness can be overcome by using an adaptive histogram equalization tech-

nique, which optimizes image contrast locally (Pizer, Amburn, Austin, Cro-

martie, Geselowitz, ter Haar Romeny, Zimmerman & Zuiderveld 1987). In

particular a technique known as contrast limited adaptive histogram equal-

ization (CLAHE), which seeks to reduce the noise produced in homogeneous

areas by basic adaptive histogram equalization, and was originally developed

for medical imaging, has been successful for the enhancement of portal images

(Rosenman, Roe, Cromartie, Muller & Pizer 1993).

3.2 Colour Schemes

A further method to improve the contrast perceived by the operator is to

optimize the representation of the brightness levels to maximize the contrast.

The representation of brightness by grey shades such that as the bright-

ness increases it moves from black through grey to white are by far the most

common. Unfortunately, all the shades used in this scheme are different satu-

20

rations of the same hue (i.e. grey). This presents a problem as only a limited

number of grey levels are perceivable as different to the human eye.

To maximize the ability to distinguish between adjacent levels of bright-

ness, changing both the hue and the saturation is necessary. Two colour

schemes that use the extended range offered by using colour coding while

retaining the ability for the observer to see adjacent brightness levels as pos-

sibly relating to the same image feature, are the Blue/White and Hot Body.

In the blue/white scheme, the coding of the brightness levels moves from

black through shades of blue ending in white. The hot body scheme varies

from black through shades of red, orange, yellow, ending in white and is

designed to follow the emission spectra of a black body as it is heated up.

Both these schemes offer improvements in the perception of contrast changes

and hence localization. It has to be born in mind however that there is often

resistance among medical personnel to view images in anything other than

grey scale.

21

4 Implementation

The chosen language for the implementation of the algorithms previously

discussed was Interactive Data Language or IDL (Research Systems Incor-

porated). IDL is an interpreted array-oriented language combined with many

graphical display and mathematical analysis routines. It also incorporates

routines to allow the writing of programs with graphical user interfaces. Pro-

grams written in IDL can be run on all supported platforms (Unix, VMS,

Microsoft Windows, Macintosh) with only small modifications.

4.1 User Interface

The user interface for the program was implemented using the IDL widgets.

Widgets are simple reusable graphical objects, such as buttons, menus, scroll-

bars or display areas, that allow user interaction via a pointing device and a

keyboard. A special class of widgets, mangers, exists that control the layout

of other widgets.

The user interface consists of two scrolled draw widgets placed horizon-

tally next to each other in which the two images to be compared are loaded.

Below each scrolled draw widget is a row of buttons to enable the image

to be histogram equalized, flipped and rotated in 90 degree increments. A

menu bar for the common operations such as loading images, clearing control

22

points, and performing transformations runs along the top of the window.

Along the base of the window is a status bar for passing messages to the

user. Control points are selected by clicking at the appropriate places in the

two scrolled draw widgets (see figure 4).

4.2 Image Acquisition

The images were obtained by taking both standard portal and simulator

radiographs and digitizing them, using a scanner. The scanner used, was

a LumiscanTM 100. This laser scanning device digitizes a radiograph by

scanning a focused spot of light across the film, as it is moved perpendicular

to the scan. The transmitted light is then converted to an electrical signal

using a photo-multiplier tube and digitized. The LumiscanTM 100 can digitize

a radiograph up to 14” × 17” using 12 bits for the intensity, and up to a

resolution of 256 pixels per inch.

The image format that the LumiscanTM device saves digitized images in

is proprietary, so before the scanned images could be used a custom routine

to phrase the image file and load in the data had to be written. The scanner

digitizes the image using 12 bits for the intensity, so when this is stored in

the image file the intensity level for each pixel is stored in two bytes. This

means that any routine to read in the image has to be aware of the endianes

23

Figure 4: Screen shot of program after registering two images.

24

(byte order) of the machine on which it is running, or the loaded image will

be gibberish. The endianes of the machine on which the program is running

is tested, and if it differs from the endianes in which the image is stored

(always little endian) a byte swap is done on the image data. For Intel x86

machines this is not a problem as they are little endian, but many Unix

machines and Macintoshes are big endian. The code for this routine can be

seen in Appendix B.

4.3 Image Display

The images are copied from their byte arrays into the draw widgets using

IDL’s TVSCL routine. This procedure takes a two dimensional array of num-

bers and outputs the data to the display, scaling the data to use the maximum

number of available colours. A blue/white colour lookup table was used to

enhance the contrast.

The image display facilities of IDL are much simpler than using the un-

derlying windowing system. However, a limitation of IDL is that it only uses

a maximum of 256 colours. An additional drawback is that each time the

image is displayed it has to be converted into the window systems device in-

dependent bitmap format. A program written for the native window system

would manipulate this bitmap directly, therefore reducing memory overheads

25

and speeding up image display.

4.4 Histogram Equalization

The built in histogram equalization routine in IDL (HIST_EQUAL) is severely

limited. Only basic global equalization with cut-offs is provided, and even

this has the unfortunate side effect of converting all output images to 8 bits.

Additionally the minimum and maximum cut-off values only work on byte

input data. The interpretive nature of the IDL language means that improved

adaptive histogram equalization techniques that have shown promise in the

area of portal images (Rosenman et al. 1993) would be prohibitively slow.

The histogram equalization as implemented brings up a modal dialog box

that displays a histogram of the image. The user is then free to interactively

select minimum and maximum cutoff values using two sliders to optimize the

histogram equalization to produce the maximum contrast improvement (see

figure 5).

4.5 Fiducial Point Selection

Pairs of fiducial points are selected by clicking on both images to identify the

coordinates in each image of a structure present in it. This causes a small

square, the centre of which is the position of the point selected, to be drawn

26

Figure 5: Histogram equalization dialog box

on the image. The points have to be selected in their corresponding pairs,

i.e. after the selection of a point in the left image the corresponding point

must be chosen in the right image before another point can be selected in the

left image. The status bar is used to display the coordinates of the selected

fiducial point and how many pairs of points have been selected. The status

bar is also used to pass suitable error messages to the user if they click out

of sequence on an image.

Although the automatic selection of fiducial points using image processing

techniques is theoretically possible, no guarantee would exist that the selected

points would correspond to invariant features in the images. The selection of

27

suitable fiducial points represents the slowest part of the procedure for image

alignment.

A facility is provided for the user to clear the selected fiducial points if

an error has been made. Also, rotating, flipping and loading a new image

causes all the selected fiducial points to be automatically cleared.

4.6 Image Transformation

The built in routine POLY_2D was used to transform the image. This is a gen-

eral purpose routine that geometrically transforms any two dimensional array

of numbers using an arbitrary polynomial. The resulting array is defined by

v(x, y) = u(x′, y′) = u(a(x, y), b(x, y))

where v(x, y) represents the pixel in the output image at coordinate (x,y), and

u(x′, y′) is the pixel at (x′, y′) in the input image used to derive v(x, y). The

functions a(x, y) and b(x, y) are polynomials in x and y of degree n, whose

coefficients are given by U and V and specify the spatial transformation

x′ = a(x, y) =
n∑

i=0

n∑
j=0

Ui,jx
jyi

y′ = b(x, y) =
n∑

i=0

n∑
j=0

Vi,jx
jyi

The POLY_2D routine uses inverse mapping, this means that the brightness

of pixels in the transformed image is calculated by looking at which point

28

Figure 6: Transformed pixels do not lie on an integer lattice

in the input image, the output pixel corresponds to. Various sampling and

interpolation techniques can be used to calculate the brightness value as it

is unlikely that the input pixels will exactly correspond to an output pixel

(see figure 6).

The transformation passed to the POLY_2D routine is that required to

map the transformed image onto the input image. This is counter intuitive,

but is accomplished by simply swapping the points around in the system of

linear equations (4). The singular value decomposition is calculated using

IDL’s SVDC routine. This is an implementation of the routine found in Press

et al. (1992). The individual components that make up the transformation

are displayed on the status bar.

The POLY_2D routine can use either nearest neighbour, bilinear or cubic

29

interpolation. Cubic interpolation was used as it produces the best results,

although it is much slower than bilinear or nearest neighbour interpolation.

To provide some feedback to the operator on the accuracy of the selected

fiducial points, the points for the transformed image were transformed as well,

and plotted alongside those from the reference image. Using this method the

better the pairs of points match up in the two images, the closer the two

points when plotted. Poorly selected, points are immediately apparent, as

they will show significant separation from one another.

4.7 Image Comparison

To allow the two images to be compared after alignment, a fader dialog is

provided. This superimposes the two images upon each other. The fraction

of each image displayed is controlled by means of a slider. This allows the

user to fade from one image to the other, by which means deciding whether

any mismatch between the simulator and portal images is possible.

4.8 Summary

Several drawbacks to IDL were encountered while conducting this project.

The range of widget types provided is limited, in particular the geometry

management provided does not extend to resize events. The behaviour of the

30

widgets was found to vary significantly under different platforms, particular

problems existing in the creation of scrolled drawing area widgets.

Medical images are often 10 and 12 bit, especially in the field of digital

radiography. The current version of IDL (4.0.1) provides little support for

images with more than 8 bits, routines often scaling the output of 10 and

12 bit images to 8 bits. The image display routines use a maximum of 256

colours despite 16/24 bit graphic cards being the norm. I would contend that

those problems make IDL less than ideal for the processing of many medical

images.

The interpreted virtual machine architecture of IDL slows down any pro-

cessing of large datasets outside the built in routines. Although provision is

made for writing external routines in languages such as C or Fortran, it is

not supported on all platforms and adds an extra layer of complexity. The

provision of a just in time compiler for the virtual machine would lessen this

problem. The just in time compiler converts the byte code of the virtual

machine into machine code immediately before execution. This technique

can provide performance similar to compiled C code and would eliminate the

speed problems.

For rough and ready implementations of algorithms to test their effective-

ness, IDL is powerful and useful tool. However factors such as cost, speed,

flexibility, and robustness means that for writing programs that would be

31

used on a day to day basis in a clinical environment, traditional languages

like ‘C’ remain the first choice over tools such as IDL.

32

5 Results

In order to estimate the reliability and accuracy of the image registration

algorithms, a series of pelvic phantom images with known shifts, rotations

and magnification changes was taken. The results detected by the algo-

rithms were then compared with the known values. Both the intra-user and

inter-user variation in image registration were studied. As the images were

obtained by digitizing films, errors in alignment between the images existed

due to movement of the film in the cassette, and on the scanner. Therefore

before alignment took place these errors were corrected by digitally trans-

forming the images such that the bottom field edge was horizontal and the

field centre was in the same position in all images.

Table 2 shows the results of the intra-user variation for the alignment of

image pairs using six pairs of fiducial points on pelvic phantom images. Each

image pair was aligned on five separate occasions, and the shifts have been

converted into millimetres using pixel size and image magnification. The

shifts produced by the affine transformation are in the xy plane as opposed

to shifts along and perpendicular to the line of rotation that the simula-

tor/treatment machines use. The figures given here have been converted

into machine geometry. Table 3 shows the average inter-user variation for

the alignment of image pairs, again using six pairs of fiducial points.

33

Image pair Rotation (◦) Magnification (%) Long (mm) Lateral (mm)

1–2 2.0 1.0000 10 0

1–3 -1.1 1.0000 10 5

1–4 -0.6 1.0714 -8 5

1–5 -1.6 1.0357 -8 -10

1–6 -0.9 1.0357 -4 -7

2–3 -3.1 1.0000 0 5

2–4 -2.6 1.0714 -18 5

2–5 -3.6 1.0357 -18 -10

2–6 -2.9 1.0357 -14 -7

3–4 0.5 1.0714 -18 0

3–5 -0.5 1.0357 -18 -15

3–6 0.2 1.0357 -14 -12

4–5 -1.0 0.9615 0 -15

4–6 -0.4 0.9615 4 -12

5–6 0.7 1.0000 4 3

Table 1: Differences between images as set on machine.

34

Image pair Rotation (◦) Magnification (%) Long (mm) Lateral (mm)

1–2 -0.14 ± 0.12 0.09 ± 0.40 1.2± 0.14 0.6± 0.31

1–3 -0.01 ± 0.13 -0.14 ± 0.18 0.9± 0.18 -0.4± 0.19

1–4 0.28 ± 0.10 0.34 ± 0.20 0.1± 0.19 0.6± 0.13

1–5 0.09 ± 0.09 0.30 ± 0.14 -0.6± 0.16 1.1± 0.18

1–6 0.01 ± 0.10 -0.11 ± 0.16 0.3± 0.23 0.2± 0.15

2–3 0.05 ± 0.09 -0.01 ± 0.18 0.5± 0.13 0.3± 0.14

2–4 0.32 ± 0.14 0.63 ± 0.33 -0.9± 0.28 1.4± 0.13

2–5 0.20 ± 0.20 0.28 ± 0.09 -1.1± 0.12 2.0± 0.11

2–6 0.11 ± 0.09 0.13 ± 0.19 -0.3± 0.14 0.8± 0.12

3–4 0.25 ± 0.06 0.28 ± 0.10 -0.5± 0.25 0.7± 0.28

3–5 -0.03 ± 0.09 0.00 ± 0.28 -1.4± 0.23 1.5± 0.18

3–6 0.09 ± 0.17 -0.05 ± 0.25 -0.4± 0.22 0.3± 0.11

4–5 -0.06 ± 0.11 0.27 ± 0.18 -0.0± 0.22 0.8± 0.17

4–6 -0.11 ± 0.22 0.05 ± 0.25 0.8± 0.32 -0.1± 0.15

5–6 -0.02 ± 0.22 -0.09 ± 0.25 0.9± 0.21 -0.7± 0.30

Average 0.07 ± 0.19 0.13 ± 0.31 -0.0± 0.80 0.6± 0.71

Table 2: Average errors and standard deviations for intra-user registration

35

Image pair Rotation (◦) Magnification (%) Long (mm) Lateral (mm)

1–2 -0.10 ± 0.06 -0.06 ± 0.42 1.1± 0.22 0.6± 0.45

1–3 0.06 ± 0.08 -0.33 ± 0.18 0.9± 0.33 -0.4± 0.12

1–4 0.28 ± 0.18 0.07 ± 0.40 0.1± 0.25 0.7± 0.28

1–5 0.17 ± 0.07 0.12 ± 0.20 -0.6± 0.22 0.8± 0.32

1–6 0.12 ± 0.08 -0.23 ± 0.11 0.4± 0.38 -0.9± 1.82

2–3 0.33 ± 0.54 0.11 ± 0.41 0.2± 0.78 -0.0± 0.41

2–4 0.26 ± 0.24 0.19 ± 0.25 -0.9± 0.21 1.1± 0.40

2–5 0.39 ± 0.09 0.21 ± 0.24 -1.0± 0.40 1.7± 0.49

2–6 0.02 ± 0.10 -0.05 ± 0.46 -0.5± 0.17 0.8± 0.14

3–4 0.11 ± 0.07 0.35 ± 0.32 -0.7± 0.27 0.9± 0.21

3–5 0.01 ± 0.12 -0.07 ± 0.26 -1.7± 0.22 1.3± 0.48

3–6 0.16 ± 0.17 -0.23 ± 0.21 -0.3± 0.39 0.4± 0.06

4–5 0.02 ± 0.22 0.42 ± 0.43 -0.0± 0.43 0.3± 0.35

4–6 -0.01 ± 0.23 0.44 ± 0.12 0.5± 0.11 -0.1± 0.26

5–6 0.06 ± 0.17 -0.35 ± 0.11 0.9± 0.18 -0.6± 0.21

Average 0.13 ± 0.24 0.04 ± 0.39 -0.1± 0.86 0.4± 0.91

Table 3: Average errors and standard deviations for inter-user registration

36

6 Discussion

The phantom studies indicate that the accuracy of intra-user alignment for

the method is less than 0.5◦ for the rotation and approximately 1mm for

shifts. The inter-user variation is greater, with an accuracy of 1◦ for the

rotation and approximately 1.2mm for the shifts.

How much of this variation relates to the unfamiliarity of the users with

the program and the alignment procedure is unknown. The majority of the

users in the inter-user study were using the program for the first time. Given

that the results for the inter-user study are still acceptable however, suggests

that the algorithms are robust.

The greater variation in the inter-user alignment indicates that before

image registration software could be use in a clinical environment users would

require proper training to ensure proficiency. This could take the form of a

series of test images of various anatomical sights with known offsets. The

user could then attempt alignment of the images. When a suitable level of

accuracy on each image and across the whole image set they could be deemed

competent.

37

7 Summary

7.1 Future Work

A quantitative approach for assessing the accuracy of the alignment process

is needed. The further the selected points are from the ideal (i.e. when

the sum of the squares of the residuals is zero), the further apart the points

appear when plotted on the transformed image. However this does not help

the user to decide when to reject the transformation due to bad fiducial point

placement and try again. A simple numerical measure, independent of the

number of points used, that showed the uncertainty in the transformation

would probably be sufficient. One possibility is to use the sum of the squares

of the residuals from the solution of the normal system divided by the number

of points used. Whatever measure is adopted, work would be required to

assess the normal variation in the figure and at what point to flag a bad

transformation.

The use of a tablet as the input method rather than a mouse should be

explored. In general people have more control over a pen than a mouse. For

example preventing a cursor moving one or two pixels while clicking on a

button is hard, whereas while pressing down on a tablet with a stylus this is

not a problem.

The selection of fiducial points in the portal image, after histogram equal-

38

ization has been applied is still difficult. The inclusion of more advanced

portal image processing techniques such as contrast limited adaptive his-

togram equalization to improve the visibility of portal anatomy should be

considered. This should make the selection of fiducial points easier, faster

and more accurate.

Before using the program to correct patient alignment pro-actively, the

registration transformation would need converting into machine geometry.

Besides knowing the pixel size and the magnification of the two images, this

also requires the coordinates of the centre of rotation of the image. One

method of identifying the centre of rotation, which is also the beam centre

would be to get the user to identify the four corners of the beam on the

image, from which the centre could be calculated. However this method

would not work on beams where the corners are obscured by shielding blocks

or a multi-leaf collimator. Alternatively this could be assumed to be in the

centre of the image, and the alignment of the on-line portal imaging system

incorporated into the quality assurance programme.

The time required to align an image file is dependent on the experience

of the user. Currently it takes about two minutes for a proficient user to

align two images. This includes the loading and image processing times. If

an image registration tool of this nature was to be use clinically for the pro-

active correction of poor patient alignment, this would need to be reduced.

39

Two areas that could yield significant reductions in the alignment time are a

larger display and more processing power (or a reduction in current demands

by increasing computational efficiency).

A larger display (i.e. screen resolution) enabling both the portal and

simulator images to be displayed simultaneously in their entirety, would save

the user form having to scroll the two images around looking for suitable

fiducial points.

Another major overhead is the time required to do the simple image

processing such as rotations/flips, histogram equalization and the transfor-

mation. Either the introduction of a workstation class machine or rewriting

of the program in a compiled language such as C or C++ would reduce

the time spent waiting for the computer to finish processing, reducing the

registration time.

7.2 Conclusions

The results of the phantom studies show that the accuracy of the technique

is similar to reports in the literature, though in clinical practice the accuracy

of the alignment is unlikely to be this high. The size of both intra and inter-

user variation in the alignment process is small enough to offer improvements

in patient alignment, that show errors of more than 10mm. Studies of por-

40

tal images have shown that these could account for as many as 15% of all

treatments (Lam, Partowmah, Lee, Wharam & Lam 1987).

The technique appears suitable for the verification of patient position in

external beam radiotherapy treatment. The small size of the variations in

the alignment transformation indicate that the algorithms are robust, and

the small size of the absolute errors offers the possibility of being able to

improve patient setup.

41

References

Barnsley, M. F. & Hurd, L. P. (1993) Fractal Image Compression, 1st ed.,

chap. 3, pp. 47–74. AK Peters Ltd.

Byhardt, R. W., Cox, J. D., Hornburg, A. & Liermann, G. (1978) Weekly

localization films and detection of field placement errors. Int. J. Radiat.

Oncol. Biol. Phys. 4, 881–887

Ding, G. X., Shalev, S. & Gluchev, G. (1993) A ρ−θ technique for treatment

verification in radiotherapy and its clinical applications. Med. Phys. 20,

1135–1143

Goitein, M. (1975) Immobilization error: Some theoretical considerations.

Radiology 117, 407–412.

Lam, W. C., Partowmah, M., Lee, D. J., Whatam, M. D. & Lam, K. S.

(1987) On-line measurement of field placement errors in external beam

radiotherapy. Br. J. Radiol. 60, 361–367

Marks, J. E., Haus, A. G., Sutton, H. G. & Griem, M. L. (1976) The value

of frequent treatment verification films in reducing localization error in

the irradiation of complex fields. Cancer 37, 2755–2761.

42

McParland, B. J. (1993) Uncertainty of field placement errors in digital portal

images. Phys. Med. Biol. 35, 299–323.

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., ter

Haar Romeny, B., Zimmerman, J. B. & Zuiderveld, K. (1987) Adaptive

histogram equalization and its variations. Comput. Vis. Graph. Image

Process. 39, 355–368

Press, W. H., Teukolsky, S. A., Vetterint, W. T. & Flannery, B. P. (1992)

Numerical Recipes in C The Art of Scientific Computing, 2nd ed. , Cam-

bridge University Press.

Rabinowitz, I., Broomberg, J., Goitein, M., McCathy, K. & Leong, J. (1985)

Accuracy of radiation field alignment in clinical practice. Int. J. Radiat.

Oncol. Biol. Phys. 11, 1857–1867

Research Systems, Inc. (1995) IDL Reference Guide Version 4.

Rosenman, J., Roe, C. A., Cromartie, R., Muller, K. E. & Pizer, S. M. (1993)

Portal film enhancement: Technique and clinical utility. Int. J. Radiat.

Oncol. Biol. Phys. 25, 333–338

Williams, J. R. & Thwaites, D. I. (1993) Radiotherapy Physics in practice,

1st ed., chap. 10, pp. 227–251. Oxford University Press.

43

Appendix A

The source to the main section of the program is contained in this appendix.

The complete program also has a routine to load a LumiscanTM image into

memory (see appendix B) and the bitmaps files containing the graphics used

for button labels (see appendix C).

<sandra.pro>

;==

;

; Sandra -- a portal image processing system written in IDL

;

; Written by Jonathan Buzzard. (last update 12/08/96)

;

; S - System for

; A - Analysing

; N - Normal

; D - Displacements in

; R - Radiotherapy

; A - Alignment

;

;==

;

; The next three routines take care of the events being dispatched by

; XMANAGER, performing all the necessary actions.

;

;

; Handle the events generated by the main application

;

PRO SandraEventHdlr, event

WIDGET_CONTROL, GET_UVALUE=control, event.id

IF (STRPOS(control, "LEFT") EQ 0) THEN BEGIN

iWhich = 1

sAction = STRMID(control, 4, STRLEN(control)-4)

control = "ACTION"

ENDIF

IF (STRPOS(control, "RIGHT") EQ 0) THEN BEGIN

iWhich = 2

sAction = STRMID(control, 5, STRLEN(control)-5)

control = "ACTION"

ENDIF

CASE control OF

"ABOUT": BEGIN

44

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

WIDGET_CONTROL, State.InfoText, SET_VALUE="System for Analysing"$

+" Normal Displacements in Radiotherapy Alignment"$

+" Version 1.1 (09/08/1996)"

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

"EXIT": WIDGET_CONTROL, event.top, /DESTROY

"ACTION" : CALL_PROCEDURE, sAction+"_EVENT", event.top, iWhich

"IMAGE_LEFT": BEGIN

; Marking control points on the images

IF event.press NE 0 THEN RETURN

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

; if mouse press in the correct image add a control point

IF (NOT (State.ControlPtCount AND 1)) THEN BEGIN

WSET, State.LeftImgHdl

PLOTS, event.x, event.y, /DEVICE, COLOR=!D.TABLE_SIZE-1, PSYM=6

InfoTxt = STRING(FORMAT=’("Fiducial Pair:",I2," Left Point:",I4,",",I4)’,$

1+State.ControlPtCount/2, event.x, event.y)

WIDGET_CONTROL, State.InfoText, SET_VALUE=InfoTxt

WIDGET_CONTROL, State.LeftCtrlPts, GET_UVALUE=leftpts

leftpts = [leftpts, event.x, event.y]

State.ControlPtCount = State.ControlPtCount+1

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=leftpts

ENDIF ELSE BEGIN

WIDGET_CONTROL, State.InfoText, SET_VALUE="Click in the right-hand"$

+" image to select the corresponding point"

ENDELSE

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

"IMAGE_RIGHT": BEGIN

; Marking control points on the images

IF event.press NE 0 THEN RETURN

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

; if mouse press in the correct image add a control point

IF (State.ControlPtCount AND 1) THEN BEGIN

WSET, State.RightImgHdl

PLOTS, event.x, event.y, /DEVICE, COLOR=!D.TABLE_SIZE-1, PSYM=6

InfoTxt = STRING(FORMAT=’("Fiducial Pair:",I2," Right Point:",I4,",",I4)’,$

1+State.ControlPtCount/2, event.x, event.y)

WIDGET_CONTROL, State.InfoText, SET_VALUE=InfoTxt

WIDGET_CONTROL, State.RightCtrlPts, GET_UVALUE=rightpts

rightpts = [rightpts, event.x, event.y]

State.ControlPtCount = State.ControlPtCount+1

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=rightpts

ENDIF ELSE BEGIN

WIDGET_CONTROL, State.InfoText, SET_VALUE="Click in the left-hand"$

+" image to select a primary fiducial point"

ENDELSE

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

45

ELSE: CALL_PROCEDURE, control+"_EVENT", event.top

ENDCASE

END

;

; Handle the events generated by the histogram dialog

;

PRO HistEventHdlr, event

WIDGET_CONTROL, GET_UVALUE=control, event.id

CASE control OF

"CANCEL": WIDGET_CONTROL, event.top, /DESTROY

"EQUALIZE" : BEGIN

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

WIDGET_CONTROL, State.ImageStore, GET_UVALUE=iImage

; do the actual histogram equalization

iImage = HIST_EQUAL(TEMPORARY(iImage), MINV=State.LowCut,$

MAXV=State.HighCut)

WSET, State.ImageDraw

TVSCL, iImage

WIDGET_CONTROL, State.ImageStore, SET_UVALUE=iImage

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

"SLIDE_LOW": BEGIN

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

iNewCut = event.value

; stop low cutoff from becoming greater than high cutoff

IF (iNewCut GE State.HighCut) THEN BEGIN

iNewCut=State.HighCut-1

WIDGET_CONTROL, event.id, SET_VALUE=State.HighCut-1

ENDIF

bTemp = State.HistImage(iNewCut,*)

State.HistImage(iNewCut,0:127) = 200

State.HistImage(State.LowCut,*)=State.LowCutStore

State.LowCut = iNewCut

State.LowCutStore = bTemp

WSET, State.HistDraw

TV, State.HistImage

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

"SLIDE_HIGH": BEGIN

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

iNewCut = event.value

; stop high cutoff from becoming less than low cutoff

IF (iNewCut LE State.LowCut) THEN BEGIN

iNewCut=State.LowCut+1

WIDGET_CONTROL, event.id, SET_VALUE=State.LowCut+1

ENDIF

bTemp = State.HistImage(iNewCut,*)

State.HistImage(iNewCut,0:127) = 200

State.HistImage(State.HighCut,*)=State.HighCutStore

46

State.HighCut = iNewCut

State.HighCutStore = bTemp

WSET, State.HistDraw

TV, State.HistImage

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

ENDCASE

END

;

; Handle the events generated by the Fader dialog

;

PRO FaderEventHdlr, event

WIDGET_CONTROL, GET_UVALUE=control, event.id

CASE control OF

"DISMISS": WIDGET_CONTROL, event.top, /DESTROY

"SLIDE_FADE" : BEGIN

WIDGET_CONTROL, event.top, /HOURGLASS

WIDGET_CONTROL, event.top, GET_UVALUE=State, /NO_COPY

; get the two images

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iRightImage, /NO_COPY

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iLeftImage, /NO_COPY

; combine the two images at the appropriate fading

WSET, State.ImageDraw

TVSCL, event.value*FIX(iRightImage(0:state.XSize-1,0:State.YSize-1))+$

(8-event.value)*FIX(iLeftImage(0:state.XSize-1,0:State.YSize-1))

; store the two images back in there user values

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iRightImage, /NO_COPY

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iLeftImage, /NO_COPY

WIDGET_CONTROL, event.top, SET_UVALUE=State, /NO_COPY

ENDCASE

ENDCASE

END

;

; Clean up when Sandra exits; ie. restore colour table

;

PRO CleanUpSandra, wSandraWindow

; Get the color table saved in the window’s user value

WIDGET_CONTROL, wSandraWindow, GET_UVALUE=SandraState

TVLCT, SandraState.ColourTable

END

;

; calculate the affine transformation and apply it

;

PRO affine_event, child

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

47

; need same number of points in each window and at least 2 pairs

IF (State.ControlPtCount LT 4) THEN BEGIN

WIDGET_CONTROL, State.InfoText,$

SET_VALUE="Need at least two fiducial points to calculate tranformation"

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

RETURN

ENDIF

IF (State.ControlPtCount AND 1) THEN BEGIN

WIDGET_CONTROL, State.InfoText,$

SET_VALUE="Need same number of fiducial points in each window"

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

RETURN

ENDIF

WIDGET_CONTROL, State.LeftCtrlPts, GET_UVALUE=leftpts, /NO_COPY

WIDGET_CONTROL, State.RightCtrlPts, GET_UVALUE=rightpts, /NO_COPY

; the transformation calculated is the one to bring the

; right hand image into alignment with the left and image.

; IT DOES NOT represent the changes to be made on the treatment or

; simulator machines to bring the patient into the correct position.

A = DBLARR(4,State.ControlPtCount)

FOR iLoop=0,State.ControlPtCount-1,2 DO BEGIN

a(0,iLoop) = DOUBLE(leftpts(2+iLoop))

a(1,iLoop) = -1.0D*DOUBLE(leftpts(3+iLoop))

a(2,iLoop) = 1.0D

a(3,iLoop) = 0.0D

a(0,iLoop+1) = DOUBLE(leftpts(3+iLoop))

a(1,iLoop+1) = DOUBLE(leftpts(2+iLoop))

a(2,iLoop+1) = 0.0D

a(3,iLoop+1) = 1.0D

ENDFOR

B = DBLARR(State.ControlPtCount)

FOR iLoop=0, State.ControlPtCount-1 DO BEGIN

b(iLoop) = DOUBLE(rightpts(2+iLoop))

ENDFOR

SVDC, A, w, u, v, /DOUBLE

n = N_ELEMENTS(w)

wp = DBLARR(n, n)

FOR iLoop=0,n-1 DO $

IF (ABS(w(iLoop)) GE 1.0D-7) THEN wp(iloop, iloop) = 1.0D/w(iloop)

x = v ## wp ## TRANSPOSE(u) ## b

; decompose the transformation into its seperate components.

; ONLY the rotation represents the change needed to patient

; setup. If you know the magnification of the two images you

; can work out the vertical movement needed to the table.

; If you know the coordinates of the beam centre (isocentre),

; and the pixel size, you can workout the lateral and

; longditude movements of the table to correct patient setup.

radeg = -57.29577951D

theta = ATAN(x(1),x(0))

AffText1 = STRING(FORMAT=’("Rotation: ",F8.4," Scale: ",F8.4)’,$

radeg*theta,SIN(theta)/x(1))

AffText2 = STRING(FORMAT=’(" Translation: x=",F6.2," y=",F6.2)’,$

x(2), x(3))

WIDGET_CONTROL, State.InfoText, SET_VALUE=AffText1+Afftext2

48

; generate the matrix holding the transformation polynomial

p = [x(2), -x(1), x(0), 0.0D]

q = [x(3), x(0), x(1), 0.0D]

; transform the image using cubic interpolation

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

iImage = POLY_2D(TEMPORARY(iImage), p, q, 2, MISSING=0)

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

; transform the control points (first need to invert matrix)

invtran = INVERT([[x(0),-x(1)], [x(1),x(0)]], /DOUBLE)

FOR iLoop=0,State.ControlPtCount-1,2 DO BEGIN

xx = rightpts(2+iLoop)

yy = rightpts(3+iLoop)

rightpts(2+iLoop) = xx*invtran(0)+yy*invtran(1)-x(2)

rightpts(3+iLoop) = xx*invtran(2)+yy*invtran(3)-x(3)

ENDFOR

; redraw the control points (add left points for comparison)

FOR iLoop=0,State.ControlPtCount-1,2 DO BEGIN

PLOTS, rightpts(2+iLoop), rightpts(3+iLoop), /DEVICE,$

COLOR=!D.TABLE_SIZE-1, PSYM=6

PLOTS, leftpts(2+iLoop), leftpts(3+iLoop), /DEVICE,$

COLOR=!D.TABLE_SIZE-1, PSYM=6

ENDFOR

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=rightpts, /NO_COPY

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=leftpts, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Histogram equalise an image

;

PRO histequ_event, child, iWhich

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

IF (iWhich EQ 1) THEN BEGIN

hImageDraw = State.LeftImgHdl

hImageStore = State.LeftImgStore

ENDIF ELSE BEGIN

hImageDraw = State.RightImgHdl

hImageStore = State.RightImgStore

ENDELSE

WIDGET_CONTROL, hImageStore, GET_UVALUE=iImage, /NO_COPY

; generate the histogram as an image

iHist = HISTOGRAM(iImage, BINSIZE=1)

fFact = 127.0/FLOAT(MAX(iHist(1:254)))

iHistImg = BYTARR(256,128)

FOR iLoop=1,254 DO BEGIN

iHistImg(iLoop,0:iHist(iLoop)*fFact)=255

ENDFOR

; put the information stored in user values back

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

49

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

; create dialog box for histogram equalization

wHistWindow = WIDGET_BASE(TITLE="Histogram Equalization")

wHistBase = WIDGET_BASE(wHistWindow, /COLUMN)

wHistDraw = WIDGET_DRAW(wHistBase, XSIZE=256, YSIZE=128, RETAIN=2)

wHistLowLabel = WIDGET_LABEL(wHistBase, VALUE="Low cut-off point",$

/ALIGN_LEFT)

wHistLow = WIDGET_SLIDER(wHistBase, /SUPPRESS_VALUE, MINIMUM=0,$

MAXIMUM=255, VALUE=0, UVALUE="SLIDE_LOW")

wHistHighLabel = WIDGET_LABEL(wHistBase, VALUE="High cut-off point",$

/ALIGN_LEFT)

wHistHigh = WIDGET_SLIDER(wHistBase, /SUPPRESS_VALUE, MINIMUM=0,$

MAXIMUM=255, VALUE=255, UVALUE="SLIDE_HIGH")

wHistButtonBase = WIDGET_BASE(wHistBase, /ROW)

wHistEqual = WIDGET_BUTTON(wHistButtonBase, VALUE="Equalize",$

UVALUE="EQUALIZE")

wHistCancel = WIDGET_BUTTON(wHistButtonBase, VALUE="Cancel",$

UVALUE="CANCEL")

; realize the histogram dialog box

WIDGET_CONTROL, /REALIZE, wHistWindow

; display the histogram

WIDGET_CONTROL, wHistDraw, GET_VALUE=hHistDraw

WSET, hHistDraw

TV, iHistImg

; store the histogram state inforamtion in user value of the dialog

HistState = CREATE_STRUCT(’LowCut’, 0)

HistState = CREATE_STRUCT(HistState, ’LowCutStore’, BYTARR(128))

HistState = CREATE_STRUCT(HistState, ’HighCut’, 255)

HistState = CREATE_STRUCT(HistState, ’HighCutStore’, BYTARR(128))

HistState = CREATE_STRUCT(HistState, ’HistImage’, iHistImg)

HistState = CREATE_STRUCT(HistState, ’HistDraw’, hHistDraw)

HistState = CREATE_STRUCT(HistState, ’ImageStore’, hImageStore)

HistState = CREATE_STRUCT(HistState, ’ImageDraw’, hImageDraw)

WIDGET_CONTROL, wHistWindow, SET_UVALUE=HistState, /NO_COPY

; register dialog box with XMANAGER as modal

XMANAGER, "Histogram", wHistWindow, EVENT_HANDLER="HistEventHdlr",$

/MODAL

END

;

; Pop up a dialog box to fade between the two images

;

PRO fade_event, child

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iRightImage, /NO_COPY

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iLeftImage, /NO_COPY

; find the sizes of the two images

rightSize=SIZE(iRightImage)

leftSize=SIZE(iLeftImage)

; select the smaller x and y sizes for image addition

IF (rightsize(1) LE leftsize(1)) THEN xx=rightsize(1) ELSE xx=leftsize(1)

50

IF (rightsize(2) LE leftsize(2)) THEN yy=rightsize(2) ELSE yy=leftsize(2)

; create dialog box for fading between two images

wFadeWindow = WIDGET_BASE(TITLE="Fader")

wFadeBase = WIDGET_BASE(wFadeWindow, /COLUMN)

wFadeDraw = WIDGET_DRAW(wFadeBase, XSIZE=xx, YSIZE=yy,$

X_SCROLL_SIZE=400, Y_SCROLL_SIZE=400,$

RETAIN=2, /SCROLL)

wFadeControlBase = WIDGET_BASE(wFadeBase, /ROW)

wFadeSlide = WIDGET_SLIDER(wFadeControlBase, MINIMUM=0,$

MAXIMUM=8, VALUE=4, UVALUE="SLIDE_FADE")

wFadeDismiss = WIDGET_BUTTON(wFadeControlBase, VALUE="Dismiss",$

UVALUE="DISMISS")

; realize the fader dialog box

WIDGET_CONTROL, /REALIZE, wFadeWindow

; display the two images equally mixed

WIDGET_CONTROL, wFadeDraw, GET_VALUE=hFadeDraw

WSET, hFadeDraw

TVSCL, FIX(iRightImage)+FIX(iLeftImage(0:xx-1,0:yy-1))

; store the fader state inforamtion in user value of the dialog

FadeState = CREATE_STRUCT(’XSize’, xx)

FadeState = CREATE_STRUCT(FadeState, ’YSize’, yy)

FadeState = CREATE_STRUCT(FadeState, ’LeftImgStore’, State.LeftImgStore)

FadeState = CREATE_STRUCT(FadeState, ’RightImgStore’, State.RightImgStore)

FadeState = CREATE_STRUCT(FadeState, ’ImageDraw’, hFadeDraw)

WIDGET_CONTROL, wFadeWindow, SET_UVALUE=FadeState, /NO_COPY

; restore the state inforamtion and images in their widget user values

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iRightImage, /NO_COPY

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iLeftImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

; register dialog box with XMANAGER as modal

XMANAGER, "Fader", wFadeWindow, EVENT_HANDLER="FaderEventHdlr",$

/MODAL

END

;

; Clear the control points from screen and memory

;

PRO clear_pts_event, child

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

; redraw the left image

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

; redraw the right image

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

; reset the control points

51

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Load an image, resetting control points

;

PRO load_event, child, iWhich

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

file = PICKFILE(FILE="", GROUP=child, FILTER="*.img", /READ)

IF (file EQ "") THEN BEGIN

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

RETURN

ENDIF

WIDGET_CONTROL, child, /HOURGLASS

; redraw the other image as necessary

IF (iWhich EQ 1) THEN BEGIN

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

lImgWdg = State.LeftImgWdg

hImageDraw =State.LeftImgHdl

hImageStore = State.LeftImgStore

ENDIF ELSE BEGIN

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

lImgWdg = State.RightImgWdg

hImageDraw =State.RightImgHdl

hImageStore = State.RightImgStore

ENDELSE

; reset the control points

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

read_lum, file, iImage

iImage(WHERE(iImage GT 4094)) = 4094

iImage = BYTSCL(TEMPORARY(iImage))

iDim = SIZE(iImage)

WIDGET_CONTROL, lImgWdg, XSIZE=iDim(1), YSIZE=iDim(2)

; store the image size

IF (iWhich EQ 1) THEN BEGIN

State.LeftImgX = iDim(1)

State.LeftImgY = iDim(2)

52

ENDIF ELSE BEGIN

State.RightImgX = iDim(1)

State.RightImgY = iDim(2)

ENDELSE

WSET, hImageDraw

TVSCL, iImage

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Routine to rotate an image counter clockwise 90 degrees

;

PRO rotccw_event, child, iWhich

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

IF (iWhich EQ 1) THEN BEGIN

lImgWdg = State.LeftImgWdg

hImageDraw = State.LeftImgHdl

hImageStore = State.LeftImgStore

iTemp = State.LeftImgX

State.LeftImgX = State.LeftImgY

State.LeftImgY = iTemp

WIDGET_CONTROL, lImgWdg, XSIZE=State.LeftImgX, YSIZE=State.LeftImgY

IF (State.ControlPtCount GT 1) THEN BEGIN

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDIF ELSE BEGIN

lImgWdg = State.RightImgWdg

hImageDraw = State.RightImgHdl

hImageStore = State.RightImgStore

iTemp = State.RightImgX

State.RightImgX = State.RightImgY

State.RightImgY = iTemp

WIDGET_CONTROL, lImgWdg, XSIZE=State.RightImgX, YSIZE=State.RightImgY

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDELSE

WIDGET_CONTROL, hImageStore, GET_UVALUE=iImage, /NO_COPY

iImage = ROTATE(TEMPORARY(iImage), 1)

WSET, hImageDraw

TVSCL, iImage

; reset the control points

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

53

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Routine to rotate an image clockwise 90 degrees

;

PRO rotcw_event, child, iWhich

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

IF (iWhich EQ 1) THEN BEGIN

lImgWdg = State.LeftImgWdg

hImageDraw = State.LeftImgHdl

hImageStore = State.LeftImgStore

iTemp = State.LeftImgX

State.LeftImgX = State.LeftImgY

State.LeftImgY = iTemp

WIDGET_CONTROL, lImgWdg, XSIZE=State.LeftImgX, YSIZE=State.LeftImgY

IF (State.ControlPtCount GT 1) THEN BEGIN

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDIF ELSE BEGIN

lImgWdg = State.RightImgWdg

hImageDraw = State.RightImgHdl

hImageStore = State.RightImgStore

iTemp = State.RightImgX

State.RightImgX = State.RightImgY

State.RightImgY = iTemp

WIDGET_CONTROL, lImgWdg, XSIZE=State.RightImgX, YSIZE=State.RightImgY

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDELSE

WIDGET_CONTROL, hImageStore, GET_UVALUE=iImage, /NO_COPY

iImage = ROTATE(TEMPORARY(iImage), 3)

Dim = SIZE(iImage)

WIDGET_CONTROL, lImgWdg, XSIZE=Dim(1), YSIZE=Dim(2)

WSET, hImageDraw

TVSCL, iImage

; reset the control points

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

54

;

; Routine to flip the portal image horizontally

;

PRO fliph_event, child, iWhich

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

IF (iWhich EQ 1) THEN BEGIN

hImageDraw = State.LeftImgHdl

hImageStore = State.LeftImgStore

IF (State.ControlPtCount GT 1) THEN BEGIN

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDIF ELSE BEGIN

hImageDraw = State.RightImgHdl

hImageStore = State.RightImgStore

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDELSE

WIDGET_CONTROL, hImageStore, GET_UVALUE=iImage, /NO_COPY

iImage = REVERSE(TEMPORARY(iImage),1)

WSET, hImageDraw

TVSCL, iImage

; reset the control points

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Routine to flip the portal image vertically

;

PRO flipv_event, child, iWhich

WIDGET_CONTROL, child, /HOURGLASS

WIDGET_CONTROL, child, GET_UVALUE=State, /NO_COPY

IF (iWhich EQ 1) THEN BEGIN

hImageDraw = State.LeftImgHdl

hImageStore = State.LeftImgStore

IF (State.ControlPtCount GT 1) THEN BEGIN

WIDGET_CONTROL, State.RightImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.RightImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.RightImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDIF ELSE BEGIN

55

hImageDraw = State.RightImgHdl

hImageStore = State.RightImgStore

IF (State.ControlPtCount GT 0) THEN BEGIN

WIDGET_CONTROL, State.LeftImgStore, GET_UVALUE=iImage, /NO_COPY

WSET, State.LeftImgHdl

TVSCL, iImage

WIDGET_CONTROL, State.LeftImgStore, SET_UVALUE=iImage, /NO_COPY

ENDIF

ENDELSE

WIDGET_CONTROL, hImageStore, GET_UVALUE=iImage, /NO_COPY

iImage = REVERSE(TEMPORARY(iImage),2)

WSET, hImageDraw

TVSCL, iImage

; reset the control points

WIDGET_CONTROL, State.LeftCtrlPts, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, State.RightCtrlPts, SET_UVALUE=[-1, -1]

State.ControlPtCount = 0

WIDGET_CONTROL, hImageStore, SET_UVALUE=iImage, /NO_COPY

WIDGET_CONTROL, child, SET_UVALUE=State, /NO_COPY

END

;

; Create the widgets that make up the point and click interface to SANDRA,

; and then register them with XMANAGER

;

PRO sandra

; get the current colour vectors to restore when application is exited.

TVLCT, savedR, savedG, savedB, /GET

; build colour table from colour vectors

colourTable = [[savedR],[savedG],[savedB]]

; create the top level window for the application

wSandraWindow = WIDGET_BASE(TITLE="Sandra", MBAR=wMenuBar)

wFileMenu = WIDGET_BUTTON(wMenuBar, VALUE="File", /MENU)

wOpen1Item = WIDGET_BUTTON(wFileMenu, VALUE="Open Left Image...",$

UVALUE="LEFTLOAD")

wOpen2Item = WIDGET_BUTTON(wFileMenu, VALUE="Open Right Image...",$

UVALUE="RIGHTLOAD")

wExitItem = WIDGET_BUTTON(wFileMenu, VALUE="Exit", UVALUE="EXIT")

wEditMenu = WIDGET_BUTTON(wMenuBar, VALUE="Edit", /MENU)

wClearPtItem = WIDGET_BUTTON(wEditMenu, VALUE="Clear Points",$

UVALUE="CLEAR_PTS")

wAffineItem = WIDGET_BUTTON(wEditMenu, VALUE="Affine Transform",$

UVALUE="AFFINE")

wFadeItem = WIDGET_BUTTON(wEditMenu, VALUE="Fade Images...",$

UVALUE="FADE")

wHelpMenu = WIDGET_BUTTON(wMenuBar, VALUE="Help", /HELP, /MENU)

wHelpItem = WIDGET_BUTTON(wHelpMenu, VALUE="About", UVALUE="ABOUT")

wSandraBase = WIDGET_BASE(wSandraWindow, /COLUMN)

56

wDrawBase = WIDGET_BASE(wSandraBase, /ROW)

wLeftBase = WIDGET_BASE(wDrawBase, /COLUMN)

wRightBase = WIDGET_BASE(wDrawBase, /COLUMN)

; Determine hardware display size.

DEVICE, GET_SCREEN_SIZE = screenSize

IF (screenSize(0) GT 640) THEN iScroll = 370 ELSE iScroll = 285

; create the two draw widgets to hold the images

wLeftDraw = WIDGET_DRAW(wLeftBase, XSIZE=512, YSIZE=512,$

X_SCROLL_SIZE=iScroll, Y_SCROLL_SIZE=iScroll,$

RETAIN=2, /BUTTON_EVENTS, /SCROLL,$

UVALUE = "IMAGE_LEFT")

wRightDraw = WIDGET_DRAW(wRightBase, XSIZE=512, YSIZE=512,$

X_SCROLL_SIZE=iScroll, Y_SCROLL_SIZE=iScroll,$

RETAIN=2, /BUTTON_EVENTS, /SCROLL,$

UVALUE= "IMAGE_RIGHT")

; load the bitmaps for the buttons

READ_X11_BITMAP, "rotccw.xbm", bRotateCCW

READ_X11_BITMAP, "rotcw.xbm", bRotateCW

READ_X11_BITMAP, "fliph.xbm", bFlipH

READ_X11_BITMAP, "flipv.xbm", bFlipV

READ_X11_BITMAP, "histoequ.xbm", bHistoEqu

; create the left image buttons

wLeftButtonBase = WIDGET_BASE(wLeftBase, /ROW)

wLeftRotateCCW = WIDGET_BUTTON(wLeftButtonBase, VALUE=bRotateCCW,$

UVALUE="LEFTROTCCW")

wLeftRotateCW = WIDGET_BUTTON(wLeftButtonBase, VALUE=bRotateCW,$

UVALUE="LEFTROTCW")

wLeftFlipH = WIDGET_BUTTON(wLeftButtonBase, VALUE=bFlipH,$

UVALUE="LEFTFLIPH")

wLeftFlipV = WIDGET_BUTTON(wLeftButtonBase, VALUE=bFlipV,$

UVALUE="LEFTFLIPV")

wLeftHistEqu = WIDGET_BUTTON(wLeftButtonBase, VALUE=bHistoEqu,$

UVALUE="LEFTHISTEQU")

; now create the right image buttons

wRightButtonBase = WIDGET_BASE(wRightBase, /ROW)

wRightRotateCCW = WIDGET_BUTTON(wRightButtonBase, VALUE=bRotateCCW,$

UVALUE="RIGHTROTCCW")

wRightRotateCW = WIDGET_BUTTON(wRightButtonBase, VALUE=bRotateCW,$

UVALUE="RIGHTROTCW")

wRightFlipH = WIDGET_BUTTON(wRightButtonBase, VALUE=bFlipH,$

UVALUE="RIGHTFLIPH")

wRightFlipV = WIDGET_BUTTON(wRightButtonBase, VALUE=bFlipV,$

UVALUE="RIGHTFLIPV")

wRightHistEqu = WIDGET_BUTTON(wRightButtonBase, VALUE=bHistoEqu,$

UVALUE="RIGHTHISTEQU")

; Create a text widget to display information

wInfoText = WIDGET_TEXT(wSandraBase, XSIZE=32, YSIZE = 1,$

VALUE=STRING(REPLICATE(32B,32)))

; realize the window

WIDGET_CONTROL, /REALIZE, wSandraWindow

WIDGET_CONTROL, wLeftDraw, GET_VALUE=hLeftDraw

WIDGET_CONTROL, wRightDraw, GET_VALUE=hRightDraw

57

; save the previous colour table in the user value to restore on exit

SandraState = CREATE_STRUCT(’ColourTable’, colourTable)

SandraState = CREATE_STRUCT(SandraState, ’LeftImgHdl’, hLeftDraw)

SandraState = CREATE_STRUCT(SandraState, ’LeftImgWdg’, wLeftDraw)

SandraState = CREATE_STRUCT(SandraState, ’LeftImgStore’, wLeftBase)

SandraState = CREATE_STRUCT(SandraState, ’LeftImgX’,512)

SandraState = CREATE_STRUCT(SandraState, ’LeftImgY’,512)

SandraState = CREATE_STRUCT(SandraState, ’RightImgHdl’, hRightDraw)

SandraState = CREATE_STRUCT(SandraState, ’RightImgWdg’, wRightDraw)

SandraState = CREATE_STRUCT(SandraState, ’RightImgStore’, wRightBase)

SandraState = CREATE_STRUCT(SandraState, ’RightImgX’,512)

SandraState = CREATE_STRUCT(SandraState, ’RightImgY’,512)

SandraState = CREATE_STRUCT(SandraState, ’RightCtrlPts’, wRightButtonBase)

SandraState = CREATE_STRUCT(SandraState, ’LeftCtrlPts’, wLeftButtonBase)

SandraState = CREATE_STRUCT(SandraState, ’ControlPtCount’, 0)

SandraState = CREATE_STRUCT(SandraState, ’InfoText’, wInfoText)

WIDGET_CONTROL, wLeftButtonBase, SET_UVALUE=[-1, -1]

WIDGET_CONTROL, wRightButtonBase, SET_UVALUE=[-1, -1]

LOADCT, 1 ; 0-greyscale 1-blue/white 3-hotbody

; load two blank 512x512 images into draw widgets this means we

; don’t have to track whether images are loaded.

WIDGET_CONTROL, wLeftBase, SET_UVALUE=BYTARR(512,512)

WIDGET_CONTROL, wRightBase, SET_UVALUE=BYTARR(512,512)

WIDGET_CONTROL, wSandraWindow, SET_UVALUE=SandraState, /NO_COPY

; register the application with XMANAGER

XMANAGER, "Sandra", wSandraWindow, EVENT_HANDLER="SandraEventHdlr",$

CLEANUP="CleanUpSandra"

END

58

Appendix B

Because a routine to load a LumiscanTM image into IDL would be a useful

routine in other programs, it was written as a separate procedure. The

comments contained in the header can be extracted using the DOC_LIBRARY

routine to provide documentation on the how to use the routine consistent

with the IDL library routines.

<read lum.pro>

PRO READ_LUM, cFile, iImage

;+

; NAME:

; READ_LUM

;

; PURPOSE:

; Read the contents of a LUMISCAN(tm) format image file and return

; the image in the form of an IDL variable.

;

; CATEGORY:

; Input/Output.

;

; CALLING SEQUENCE:

; READ_LUMI, cFile, image

;

; INPUTS:

; file: Scalar string giving the name of the LUMISCAN file.

;

; OUTPUTS:

; image: The 2D byte array to contain the image.

;

; SIDE EFFECTS:

; None.

;

; EXAMPLE:

; To open and read the LUMISCAN image file named "foo.img" in the

; current directory, store the image in the variable IMAGE1 enter:

;

; READ_LUM, "foo.img", image1

;

; MODIFICATION HISTORY:

; Written May, 1996, Jonathan Buzzard.

;-

ON_IOERROR, BAD_IO

ON_ERROR, 1

OPENR, unit, cFile, /GET_LUN, /BLOCK

59

iWidth = 0

iHeight = 0

POINT_LUN, unit, 806

; test for the machines endian’es and load with byte swapping if big endian

; note: it should return 1 for a little endian machine and 0 for a big endian

IF (BYTE(1, 0, 2))(0) EQ 1B THEN BEGIN

READU, unit, iWidth

READU, unit, iHeight

POINT_LUN, unit, 2048

iImage = INTARR(iWidth, iHeight)

READU, unit, iImage

ENDIF ELSE BEGIN

READU, unit, width

READU, unit, height

BYTEORDER, iWidth, iHeight

POINT_LUN, unit, 2048

iImage = INTARR(iWidth, iHeight)

READU, unit, iImage

BYTEORDER, iImage

ENDELSE

FREE_LUN, unit

RETURN

BAD_IO: MESSAGE, ’Error occured accessing Lumiscan file : ’ + cFile

END

60

Appendix C

The five buttons below each image each have a bitmap label to convey their

function. These bitmaps are stored in the X11 Bitmap format, which con-

sists of small fragments of C code, providing an array of bits with sym-

bolic constants giving the width and height. These are read in using the

read_x11_bitmap function from the IDL library before being used as the

values for the button widgets. The five bitmap files used for button labels

are shown below.

<rotccw.xbm>

#define rotateCCW_width 16

#define rotateCCW_height 16

static unsigned char rotateCCW_bits[] = {

0x00, 0x00, 0x0c, 0x00, 0xec, 0x03, 0xfc, 0x0f, 0x3c, 0x1c, 0xfc, 0x18,

0xfc, 0x30, 0x00, 0x30, 0x00, 0x30, 0x00, 0x30, 0x06, 0x30, 0x06, 0x18,

0x1c, 0x1c, 0xf8, 0x0f, 0xe0, 0x03, 0x00, 0x00};

<rotcw.xbm>

#define rotateCW_width 16

#define rotateCW_height 16

static unsigned char rotateCW_bits[] = {

0x00, 0x00, 0x00, 0x18, 0xe0, 0x1b, 0xf8, 0x1f, 0x1c, 0x1e, 0x8c, 0x1f,

0x86, 0x1f, 0x06, 0x00, 0x06, 0x00, 0x06, 0x00, 0x06, 0x30, 0x0c, 0x30,

0x1c, 0x1c, 0xf8, 0x0f, 0xe0, 0x03, 0x00, 0x00};

<fliph.xbm>

#define flipH_width 16

#define flipH_height 16

static unsigned char flipH_bits[] = {

0x90, 0x00, 0x98, 0x00, 0x9c, 0x00, 0xfe, 0x1f, 0xfe, 0x1f, 0x9c, 0x00,

0x98, 0x00, 0x90, 0x04, 0x80, 0x0c, 0x80, 0x1c, 0xfc, 0x3f, 0xfc, 0x3f,

0x80, 0x1c, 0x80, 0x0c, 0x80, 0x04, 0x00, 0x00};

<flipv.xbm>

#define flipV_width 16

#define flipV_height 16

static unsigned char flipV_bits[] = {

0x00, 0x00, 0x00, 0x0c, 0x18, 0x1e, 0x18, 0x3f, 0x98, 0x7f, 0x18, 0x0c,

0x18, 0x0c, 0xff, 0x7f, 0x18, 0x0c, 0x18, 0x0c, 0xff, 0x0c, 0x7e, 0x0c,

0x3c, 0x0c, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00};

61

<histoequ.xbm>

#define histEqu_width 16

#define histEqu_height 16

static unsigned char histEqu_bits[] = {

0x00, 0x00, 0x00, 0x01, 0x00, 0x03, 0x80, 0x03, 0x80, 0x03, 0xc0, 0x07,

0xc0, 0x07, 0xc8, 0x0f, 0xd8, 0x0f, 0xd8, 0x0f, 0xfc, 0x1f, 0xfc, 0x1f,

0xfc, 0x3f, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00};

62

Appendix D

The translations and rotations produced by the affine transformation do not

correspond to those used on a treatment machine. The treatment and sim-

ulator machines use a frame of reference in which the operations of rotation

and translation commute (i.e. it does not matter in which order they are

carried out). Additionally the centre of rotation for the treatment and sim-

ulator machines is the isocentre. A method is required to convert the affine

transformation into the coordinate system used by the treatment machines.

Take two images, image one being the simulator image and image two

the portal image, and a transformation (r, θ, xt, yt) that maps pixels in the

version of image two registered with image one, onto corresponding pixels

in image two (i.e. the transformation passed to POLY_2D). If (xc, yc) is the

position of the centre of rotation (assumed to be the same in both images),

and image two has an initial magnificationm and the pixel size of both images

is p (assumed to be square), then the position of the centre of rotation before

the transformation was applied (xa, ya) is given by

xa =
xcr cos θ + ycr sin θ − xt cos θ − yt sin θ

cos2 θ − sin2 θ

ya =
ycr cos θ − xcr sin θ − yt cos θ + xt sin θ

cos2 θ − sin2 θ

The distance between the two points (xc, yc) and (xa, ya) using Pythagoras’

theorem is

63

h =
√

(xa − xc)2 + (ya − yc)2

and the angle is given by

tanφ =
ya − yc

xa − xc

The longitudinal movement of the table (i.e. along its length) is given by

p

m
× h cos

(π
2
− θ − φ

)
and the lateral movement of the table is given by

p

m
× h sin

(π
2
− θ − φ

)
These movements will have the same units as the pixel size p. The rotation

is the same in both systems, and knowing the table height and magnification

of image one, working out the vertical table movement is trivial.

64

